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ABSTRACT
Electronic Health Records (EHR) narratives are a rich source of
information, embedding high-resolution information of value to
secondary research use. However, because the EHRs are mostly
in natural language free-text and highly ambiguity-ridden, many
natural language processing algorithms have been devised around
them to extract meaningful structured information about clinical
entities. The performance of the algorithms however, largely varies
depending on the training dataset as well as the effectiveness of
the use of background knowledge to steer the learning process.

In this paper we study the impact of initializing the training
of a neural network natural language processing algorithm with
pre-defined clinical word embeddings to improve feature extrac-
tion and relationship classification between entities. We add our
embedding framework to a bi-directional long short-term memory
(Bi-LSTM) neural network, and further study the effect of using
attention weights in neural networks for sequence labelling tasks
to extract knowledge of Adverse Drug Reactions (ADRs). We incor-
porate unsupervised word embeddings using Word2Vec and GloVe
from widely available medical resources such as Multiparameter
Intelligent Monitoring in Intensive Care (MIMIC) II corpora, Uni-
fied Medical Language System (UMLS) as well as embed pharmaco
lexicon from available EHRs. Our algorithm, implemented using
two datasets, shows that our architecture outperforms baseline
Bi-LSTM or Bi-LSTM networks using linear chain and Skip-Chain
conditional random fields (CRF).
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1 INTRODUCTION
During recent years, the importance of the information embedded
within electronic health records (EHRs) for understanding disease
and treatment has been recognized [14]. As a result, many stud-
ies focus on the identification of named entities and relationships
from clinical notes. Apart from rule-based approaches, whereby the
reliance is on hand-crafted rules and domain-dependent dictionar-
ies to obtain performance [9], many machine learnings have been
applied such as support vector machines (SVMs) and conditional
random fields (CRFs) and [12] among a few.

Regardless of the model chosen, it must deal with the challenges
imposed by the type of text embedded within clinical notes. In con-
trast to general biomedical text, which is intended to communicate
research results, electronic health records (EHRs) pose a unique
set of challenges for named entity recognition and relationship
extraction. First, as opposed to the unambiguous and explicitly
codified content contained within the general biomedical text, EHR
narratives are highly heterogeneous in their content (ranging from
discharge summaries to progress notes to consultations). More-
over, the general scarcity of EHRs for natural language processing
tools development and testing has created a lag in the progress of
biomedical entity recognition from free-text clinical narratives as
opposed to general biomedical text from the scientific literature.
Finally, there is a significant discrepancy between the performance
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of classifying simple (usually one-word or standardized format) en-
tities and relationships such as drug name, dosage, frequency, and
severity, as opposed to more sophisticated concepts such as ADEs.
With ADEs, the concepts to be extracted and their connecting rela-
tionships a) frequently span several, and possibly non-consecutive
locations in a given sentence and b) their is highly dependent on
the context in which they occur [10]. As a results, the performance
of machine learning algorithms has traditionally ranged between
F-scores of 0.69 to 0.88.

In this paper, we evaluate the use of word embeddings on the per-
formance of machine learning algorithms in annotating EHR text.
Our focus is on constructing efficient word embeddings form known
clinical entities (drug names, diseases, ADR positive-negative terms,
uncommon abbreviations and rare terms) derived from EHR text.
We design a neural network model which uses the embeddings to
enhance context evaluation of ADE terms. Mainly, the embeddings
are provided as input to a Bi-Directional Long Short-term Memory
(LSTM) layer of a Recurrent Neural Network (RNN) to model the
context information of each word.

We also model long term and short phrase dependencies in the
text to enhance context identification. Spanning over a context
window to form the closest context vectors will result in better
indications of relationships between labels. We use attention mech-
anism inspired by works from [2] on top of the RNN to output
attention weights and generate them at every step. On top of Bi-
LSTM with attention mechanism, we use a CRF layer to jointly
decode labels for the whole sentence to detect ADE presence.

2 BACKGROUND
2.1 Named Entity Recognition
NER is the ability to recognize references to entities and classify
them into semantic categories. In biomedical domain most of the
NER systems such as MedLEE [4], MetaMap [1] and cTAKES [19]
are rule based and rely on medical dictionaries. A move in the
direction of machine learning has led to CRF models that that can
learn to recognize the entities automatically, with F-Scores ranging
from 0.69 to 0.88.

Named entity recognition in biomedical domain have seen the
use of annotated biomedical corpus. CRF tagging models have been
used to extract classify entity domain such as names of protein,
genes, DNA and the like. LSTM models have also been used for
NER on BioCreative corpus. [5] extracted ADE fromMedline corpus
using many biomedical dictionaries.

2.2 Word Embeddings
Word embeddings are vector representations of words that have
played an important role in biomedical named entity recognition
as an application of deep learning techniques. Word2Vec [15], the
prime example of word embeddings, has been investigated for clini-
cal sentiment analysis, relation extraction and named entity recogni-
tion. In event extraction, [13] applied word embeddings for BioNLP
event extraction tasks, [16] conducted biological event trigger iden-
tification with embedding enabled neural network model and [6]
demonstrated unsupervised methods that exploit co-occurrence of
information to model in a vector space to improve predictive perfor-
mance. In our approach we train the Word2Vec word embeddings

from PubMed articles, MIMIC datasets, Wikipedia articles, Drug-
Disease pairs from EHR text, abbreviations and positive-negative
phrases compiled from our medical corpus.

2.3 Bi-LSTM (Baseline)
LSTM networks are a type of RNN which have been beneficial in
sequence labeling tasks as they can make use of the past hidden
states ht for a stipulated period of time. However, it is unable to
know the future states which would be useful in the labeling task.
Bi-LSTM networks on the other hand store the hidden states from
a forward and backward pass. We can make use of the past and
future states to label the sequence at hand. In the baseline model we
use the word embedding as input, a Bi-LSTM neural network and a
Softmax Output layer. The input text is tokenized in a sequence of
tokens.

2.4 CRF
CRF models have been widely used in sequence labeling tasks when
the labels of surrounding neighbours have to be jointly decoded
for a given sentence. [17] have used CRF classifier for concept
extraction in social media text. CRFSuite, an implementation of
[18] provides a fast and simple interface for training and modifying
input features. The CRF classifier is trained on annotated mentions
of ADR and it classifies tokens in sentences. If we represent z
= z1....zn , as the embedding vector for the ith word in the input
sequence and y = y1, ...,yn as the sequence of labels for z from a set
of sequences Y (z). For a linear chain CRF, the family of conditional
probility p(y | z;W ,b) can be written as follows:

p(y | z) =
1

Z (x)

n∏
i=1

Ψi (yi ,yi−1,z) (1)

Here Z is the partition function used for normalizing the local
factor function Ψt . Thus Z can be written as:

Z =
∑

y′∈Y (z)

n∏
i=1

Ψi (y
′
i ,y
′
i−1,z) (2)

where Ψi (y′,y, z) = exp(WT
y′,yzi + by′,y ) are the potential func-

tions andWT
y′,y andby′,y are the weight vector and bias for the label

pair (y′,y) respectively. This binary potential or transition score
is modeled as a matrix [A]LXL . Here L is the number of possible
labels. Each element in the matrix Ai, j represents the transition
score from label i to label j.

The logarithm of the conditional likelihood estimation is given
by:

L(W ,b) =
∑
i
logp(y | z;W ,b) (3)

The model is then trained end-to-end by maximizing the log-
likelihood thereby choosing the parameters L(W ,b).

2.5 LSTM-CRF Networks
Understanding the contribution of a LSTM network ([7]) to a CRF
layer is critical to model further belief propogations for a given
sentence. A LSTM network outputs a matrix of state transition
scores fθ ([x]T1 ) for the sentence [x]

T
1 with parameters θ and for the
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i-th tag and t-th word. A transition score matrix [A] is generated
by the LSTM network, with [A]ji as the transition score from the
i-th state to the j-th state for a pair of time instances. The LSTM
is trained to maximize the log-liklihood with respect to θ as θ̂ ←
θ + λ

δ logp(y |x,θ )
δθ using a gradient descent, where λ is the learning

rate chosen as a Hyperparameter. These new parameters of the
network θ̂ is updated as θ̂ = θ

⋃
[A]

j
i∀i, j . The sentence score is the

conditional tag probability of one tag path [x]T1 is given as :

s([x]T1 , [i]
T
1 ,θ ) =

T∑
t=1
([A][it−1],[i]t + [fθ ][i]t ,t ) (4)

We can write the conditional tag path probability for a sentence-
level log likelihood as:

p(i | x ,θ ) =
exps([x ]

T
1 ,[i]

T
1 ,θ )∑

j exps([x ]
T
1 ,[j]

T
1 ,θ )

(5)

We now maximize the log sentence-level likelihood of the true
path using θ̂ , which can be given as the log of the conditional
probability as :

logp([y]T1 | [x]
T
1 , θ̂ ) = s([x]

T
1 , [i]

T
1 ,θ ) − loдadd

∀jT1
s([x]T1 , [j]

T
1 , θ̂ ) (6)

Viterbi algorithm can be used to find the maximum scored path
and the parameters for it.

2.6 Bi-LSTM-CRF Networks
The Bidirectional LSTM-CRFmodel is mentioned in [8]. In a Bidirec-
tional LSTM networks, for a given sentence, the network computes
both a left

−−→
h(t) and a right

←−−
h(t) for a given sentence context in

every input x(t). The final output is a result of concatenation h(t) =
[
−−→
h(t);
←−−
h(t)]. The features in the layer h(t) are then used as input in a

linear chain CRF interface to provide sequential decoding.

2.7 Bi-Directional Recurrent Neural Network
with Attention (RNNA)

Since ADR relationships are not necessarily constrained to sentence
level input, identifying the sentences or phrases that contribute to
the identification of a ADR could be beneficial. A Bi-Directional
RNN is used to encode the source document, the output of which
is then input to a attention layer which generates the attention
weights. The advantage of using attention mechanism is to figure
out which encoded elements contributed to the generation of the
current unit or the prediction of a ADR. We describe the attention
mechanism as used with a Bi-Directional RNN in our model as
represented with an Encoder and Decoder model.

2.7.1 Encoder: Bi-Directional RNN For Sequence Tagging. In Bidi-
rectional LSTM networks, for a given sentence

(
x1...xTx

)
, the net-

work computes a sequence of Forward hidden states (
−→
h1....

−−→
hTx ).

A backward RNN reads the sequence in reverse order
(
xTx ...x1

)
and computes the backward hidden states(

←−
h1....

←−−
hTx ). The annota-

tion for each word x j is obtained by concatenating the forward
and backward hidden states i.e. h(t) =

[−→
hj ;
←−
hj
]
. The annotation hj

x1 x2 x3 x4

−→
h1

−→
h2

−→
h3

−→
h4

←−
h1

←−
h2

←−
h3

←−
h4

α1 α2 α3 α4

⊕

s1 s2 s3 s4

NN NNP VBD PP

at,1
at,2 at,3

at,4

Forward
LSTM

Backward
LSTM

Word Em-
bedding

CRF

ct

Figure 1: A Bi-Directional LSTM-CRF network with a for-
ward and backward LSTM layer. The CRF layer receives in-
put from the underlying hidden layers and then computes
the unary potential from the parameters input.

contains information of the preceding and following words for x j .
The sequence of annotations will be input to the decoder and the
alignment model to compute the context vector.

2.7.2 Decoder: AttentionWeights. Assume the encoding sequence
of annotations output by the Bi-LSTM layers is (h1.....hTx ) for in-
put sentence

(
x1...xTx

)
. The context vector ci is computes as the

weighted sum of annotations hj :

ci =

Tx∑
j=1

αi jhj (7)

The weight αi j for each annotation is computed by

αi j =
exp(ei j )∑Tx

k=1 exp(eik )
(8)

where
ei j = a(si−1,hj ) (9)

Here a is the alignment model which scores how well the inputs
around position j are modeled with the output at position i . The
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energy ei j reflects the importance of the annotation hj with respect
to the previous hidden state si−1 in deciding the next state si and the
output yi . The alignment model a as a feedforward neural network
is jointly trained with other parameters such as the weight matrices.
The alignment model computes a gradient of the cost function for
backpropogation. The gradient can be used to train the alignment
model. The context vectors align themselves to the target contexts
which in the case of biomedical concepts can be relationships such
as Advice , E f f ect ,Mechanism etc.

a(si−1,hj ) = v
T
a tanh(Wasi−1 +Uahj ) (10)

Here va ,Wa ,Ua are the weight matrices. The context vector ci is
calculcated at every annotation step. The importance of a word
as the similarity to a context is given by the attention weight in
equation . We embed the biomedical concepts as a target word
embedding matrix that can be used to align the context vectors
with.

3 OUR MODEL
3.1 Bi-Directional RNNA with CRF
We apply Skip-Chain CRF, on top of the Bi-LSTM network to jointly
model the probability of the entire tag sequence score. Unlike Linear
CRF, Skip-Chain CRF can use the long term dependency between
tags through the use of skip edges. In stead of taking into account
the joint transition probability between every adjacent node, we can
only consider the state transition between the words with attention.
Linking the CRF graph edges based on the context vectors derived
at each hidden state will classify the sequence with the presence of
an ADR more appropriately.

4 EXPERIMENTS
Our extraction of disease, drugs and adverse effects from more than
6000 annotated electronic health records are in the form of a simple
dictionary which needs to be embedded in a common space for
representation with other word vectors. Our approach is to use the
encoding of these concepts as found in Unified Medical Language
System (UMLS) , LOINC and ICD-9, ICD-10 and NCD drug code
and embed them in the common space of vectors using word2vec.
We initialize the embedding layer at the start of the training with
word vectors calculated on the larger data corpus. This ensures that
words which are not seen frequently in the labeled data corpus still
have a reasonable vector representation.

For training the network, a batch size of 100 is used, whichmeans
sentences whose total length is less than 100 are considered as a
batch. We first create the word embeddings of dimension d and then
each batch is further tokenized as words and each word is mapped
to a real-valued vector form the word embedding. For each batch,
we run the Bidirectional LSTM-CRF model which comprises of a
forward pass of the hidden states

−−→
h(t) and then a backward pass

←−−
h(t)

in a similar manner. The output if concatenated ash(t) = [
−−→
h(t);
←−−
h(t)]

from which we get the output score for all tags at all positions. We
then input the scores to calculate the attention weights for the
words. On top of the Bi-LSTM, we use a CRF layer to compute the
gradients of the network output and state transition edges.

We use ten-fold cross validation for the validating the perfor-
mance, where 10% of the data is used as development set, 10% as the

test set and the remainder for training. We use CRF-suite (Okazaki,
2007) for implementing the CRF tagger and Keras library to set up
the neural network.

4.1 Hyperparameters
We choose a hidden layer size of 250 nodes for each of the forward
and backward layers which is considered not too large or small for
the experiment. The CRF layer has a hidden size of 200 nodes. The
batch size of 64 sentences is chosen as with larger size the time
taken to learn the parameters will be higher. The sentence length
is restricted to 100 tokens. The first layer was a 200 dimensional
word embedding layer. We used dropout with a probability of 0.5
for all models. All the models were trained with learning rate of
0.01, using Adagrad ([3]) with momentum.

4.2 Datasets
We use ADE corpus which was created by (Gurulingappa et al.,
2012) by sampling from MEDLINE case reports. The case reports
consists of signs, symptoms, diagnosis, treatment and follow-up for
patients. The ADE corpus contains 2,972 documents with 20,967
sentences. We also use the ADE corpus from 1644 PubMed abstracts
(Gurulingappa et al., 2012). The corpus was divided into datasets
with ADE sentences and containing no ADEs.

Another dataset we use is the EHR documents in Case Record
Interactive Search (CRIS) which was developed by South London
and Maudsley (SLAM) NHS Foundation Trust with National Insti-
tute for Health Research (NIHR) Biomedical Research Centre (BRC)
Infrastructure funding. It is an internal database of electronic health
records for psychiatric patients. We have manually annotated 6000
EHR documents for presence of ADR and use these Gold annotated
EHR documents for our experiment.

5 RESULTS
We compare the Baseline models of Bi-LSTM network only, Bi-
LSTM with Linear chain CRF and Skip-Chain CRF networks. Preci-
sion, Recall and F-scores are calculated for positive extraction of
ADR. It can be seen from the table shown that ourmodel RNNA-CRF,
which uses attention weights on the words alongwith a Skip-Chain
CRF, has an improved performance over the baseline models when
used with EHR documents. This maybe because the ADR descrip-
tion maybe spread over a document and contained in more than one
sentences. Using attention weights as a parameter for Skip-Chain
CRFs can relate these words for better prediction of ADR. All the
neural networks constructed with Bi-LSTM model render similar
performance results on PubMed articles. Our model RNNA-CRF has
a very close recall (0.83) to Bi-LSTM-CRF network (0.80). We can
visualize the words which are used by the neural network for pre-
dicting the labels with the help of visualizers for attention weights
which can present results in more understandable form.

6 DISCUSSIONS
The work demonstrates the importance of creating custom word
embedding from clinical concepts, as well as a modification of Re-
current neural networks to undertsand the contribution of words
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Dataset Model Recall Precision F-score

MedLine

Bi-LSTM 0.8402 0.8720 0.8558

Bi-LSTM-
CRF

0.8068 0.8839 0.8436

RNNA-
CRF

0.8523 0.8917 0.8716

CRIS
EHR

Bi-LSTM 0.7830 0.7845 0.7837

Bi-LSTM-
CRF

0.8021 0.8278 0.8147

RNNA-
CRF

0.8316 0.8222 0.8268

Table 1: Performance result comparison for Adverse Drug
Reaction identification from two datasets.

and phrases in label prediction tasks. The models built on Bidirec-
tional LSTM neural network alongwith CRF are both good in NER
and relation extraction tasks. CRF on Bi-LSTM brings about im-
provement as compared to using a softmax layer or max-pooling. In
the case of biomedical domains, incorporating our dictionary of Dis-
eases, Drugs, Side-Effects, Negations into word-embeddings boosts
the performance for EHR text documents. We used the PubMed
Central Open Access Subnet (PMC) and PubMed word2vec embed-
dings. PMC is an online archive of over a million biomedical and
life-sciences articles and the PubMed database has more than 25
million citations that cover abstracts of articles. Similarly incorpo-
rating known ADRs from SIDER2 ([11]), can help perform a direct
lookup for drugs with known ADR mentioned. SIDER2 contains
unstructured ADR data that can be mapped with the UMLS concept
ID.

We note that as compared to identification of labels such as Drug,
Disease, Dosage, Severity, Frequency are less complicated than the
extraction of ADR. As the rules for labeling an ADR is not fixed
and a ADR also taked into account text other than a drug or disease
mention, there is a need to establish robust decoding algorithms
for CRF.

There is certainly alot of future work to be done in this, for
instance understanding which features are important for producing
the context vectors and using those features in a Skip-Chain CRF. It
is complicated to identify the correct features in biomedical domain
to link on skip-edges of a CRF. Owing to the sparsity of labels inmost
EHR, attention weights should be considered as a useful resource
in sequence labeling tasks.
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