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ABSTRACT 
The biomedical literature constitutes a rich source of evidence to 
support the discovery of biomarkers. However, locating evidence 
in huge volumes of text can be difficult, as typical keyword 
queries cannot account for the meaning and structure of text. 
Text mining (TM) methods carry out automated semantic 
analysis of documents, to facilitate structured searching that can 
more precisely match users’ information needs. We describe our 
TM approach to the detection of sentence-level associations 
between genes and diseases, as a first step towards developing a 
sophisticated search system targeted at locating biomarker 
evidence in the literature. We vary the sophistication of our 
detection methodology according to sentence complexity, using 
either co-occurring mentions of genes and diseases, or linguistic 
patterns obtained using evidence from approximately 1 million 
biomedical abstracts. We demonstrate that this method can 
detect associations more successfully than applying a single 
technique, with an accuracy that compares highly favourably to 
related efforts. We also show that the identified relations can 
complement those detected using alternative approaches. 
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1 INTRODUCTION 
Over recent years, there has been  an increasing trend towards 
stratified medicine, in which specific therapies are targeted 
towards patients with certain characteristics. This approach is 
dependent upon the development biomarker tests, to determine 
which people will respond best to which therapies. Biomarkers 
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may be defined as “objective indications of medical state 
observed from outside the patient – which can be measured 
accurately and reproducibly” [1]. Laboratory-based biomarkers 
build up a biological blueprint of patients, which can determine 
whether they possess a specific variant of a gene, their levels of 
gene expression, etc. Such information can be used in diagnosing 
a disease or to predict response to different treatments, etc.    

Scientific advances have led to a deluge in the availability of 
both biomedical data and publications aiming to contextualise 
and interpret this data. The biomedical literature thus represents 
a hugely valuable repository of information which, when used 
effectively in combination with other biomedical data, can 
provide vital evidence to support the discovery of biomarkers 
and the development of associated tests. However, the sheer size 
of the literature can make locating supporting evidence akin to 
finding a needle in a haystack.  

Keyword querying facilities provided for large repositories of 
scientific publications are typically poorly aligned to the needs of 
the researcher, whose aim is generally to locate different pieces 
of knowledge, e.g., evidence of associations between genes and 
diseases. However, queries involving individual words and 
phrases are not sufficiently expressive to represent knowledge 
requirements.  For example, genes and diseases are concepts, 
each of which may be described in text using a variety of 
different words or phrases, which can be difficult to predict or 
enumerate. A simple example is rheumatoid arthritis, which can 
also be referred to using the abbreviation RA. Particularly for 
genes, however, there may be a very large number of possible 
variations.  Additionally, a given word or phrase could refer to 
multiple concepts (e.g., RA can also be an abbreviation for 
retinoic acid and radial artery, amongst others). Furthermore, 
keyword queries are not sufficiently powerful to isolate 
documents that specifically mention an association between 
rheumatoid arthritis and one or more (unspecified) genes. 

The inability of keyword queries to take into account the 
meaning and structure of text means that, on one hand, they 
usually retrieve many irrelevant results, whilst on the other 
hand, certain documents that are relevant may fail to be 
retrieved.  Accordingly, it can be extremely difficult to exploit 
the rich knowledge available in literature to its full potential, and 
much valuable information may remain “locked away” and 
undiscovered, which can hinder scientific progress [2].     

Text mining (TM) methods offer a solution, by carrying out 
automated analyses of huge collections of documents, to detect 
and structure various aspects of their meaning or semantics.  
Using these analyses, it is possible to develop systems providing 
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structured, knowledge-centric search facilities, making it far 
easier to tap into the information encoded in vast repositories.   

The mature nature of many TM techniques means that it is 
already feasible to develop systems that allow searching at the 
level of concepts, rather than words.  Automatic named entity 
recognition (NER) tools identify and categorise words and 
phrases in text that denote concepts of interest. The results of 
NER can allow sense-based restrictions to be placed on queries 
such that, e.g., only documents in which RA corresponds to a 
disease will be retrieved. Automatic normalisation of recognised 
named entities (NEs) aims to identify all ways in which a given 
concept could be mentioned, allowing a search for interleukin 2 
to automatically retrieve documents containing synonyms and 
abbreviations such as IL2, IL-2, T-cell growth factor, TCGF, 
lymphokine, etc. Various high performance tools can recognise 
and/or normalise various concepts of relevance to biomarkers, 
e.g., genes [3, 4], diseases [5], anatomical entities [6], 
chemicals/drugs [7, 8] and gene variants [9]. Further processing 
can identify associations or relationships that hold between the 
recognised/normalised concepts, which can facilitate the 
development of powerful systems that allow search for many 
different relations over huge numbers of documents (e.g., [10]). 

In this paper, we describe our novel approach to extracting 
relationships between genes and diseases described within single 
sentences, as a step towards developing a search system that will 
allow such relations to be located and filtered according 
contextual and interpretative information, and make it possible 
to find answers to complex queries, e.g., In which population 
subgroups is Gene X is a putative biomarker for Disease Y? 

 Our approach uses extraction methodologies of differing 
levels of sophistication, according to the complexity of 
sentences. We show that in simpler sentences, it can be assumed 
that genes and diseases are related if they are mentioned 
together. However, linguistic patterns generated using evidence 
from approximately 1 million biomedical abstracts about how 
relationships are typically described are used to “disentangle” 
individual associations between multiple genes and diseases in 
complex sentences. We demonstrate that this combined 
approach is more successful than using a single method to 
identify all relations. We also show that our method can extract 
relations with an accuracy that compares highly favourably to 
related efforts, and that the types of evidence found using our 
approach complement those extracted using other methods.     

In the remainder of this paper, section 2 outlines related 
research into relation extraction, while section 3 introduces the 
main characteristics of our approach. Section 4 describes the 
annotated corpus used for evaluation, while section 5 explains 
and reports the results of our relation extraction experiments. 
Based on these, section 6 proposes an optimal method for gene-
disease relation extraction and compares our final results with 
those of related efforts.  Section 7 describes the application of 
our method to a larger data set, and shows how its output can 
complement that of a related method.  Finally, in section 8, we 
provide some conclusions and outline our planned future work.   

 

2 RELATED WORK 
The identification of relationships between various types of 
concepts in biomedical texts, including genes and diseases, has 
formed the focus of research efforts of varying sophistication, 
ranging from those which detect general associations, to those 
which categorise the nature of the relationship, e.g., according to 
whether it occurs due to altered expression or mutation of the 
gene [11, 12], and even to those which assign “interpretative” 
information about the relation, e.g. whether it constitutes a 
hypothesis or experimental results, etc. [13, 14].  

The methodology employed and the nature/complexity of the 
information extracted can depend on the types of supporting 
resources available. Approaches can be coarsely divided into 
supervised and unsupervised methods. Supervised approaches use 
a sample set (or corpus) of documents, in which relations have 
been manually marked-up (or annotated) by domain experts. 
Machine learning (ML) methods then learn characteristics of the 
sample documents that will allow the relations of interest to be 
detected automatically in unseen texts. Whilst ML methods can 
be trained to recognise and categorise complex relationships in 
biomedical text [15-17], the production of enough high-quality, 
expert-annotated text can be complex, time-consuming and 
expensive. ML methods can also be highly sensitive to the 
specific features of the text on which they are trained. This can 
reduce their portability, unless training corpora are very 
heterogeneous in terms of subject areas, article types, etc.  

Various annotated corpora include gene-disease relationships, 
some of which have been used for ML purposes [11, 12, 18-21]. 
However, most such corpora suffer from drawbacks, limiting 
their suitability for training systems that can accurately detect 
relationships in diverse types of literature articles. These include 
a lack of public availability of the annotated data (e.g., [20]); the 
annotations not being linked to specific text spans in documents 
(e.g., [22-24]); the number of annotated relations being very 
small (e.g., [25-27]); and the corpus not being representative of 
how information is expressed in biomedical literature [11].  

In contrast to supervised methods, unsupervised methods are 
not reliant on the availability of annotated corpora. Although 
they can be less suited to detecting detailed and complex 
relationships, at least without large amounts of manual effort, 
they can be very powerful in detecting simpler relationships that 
exploit general features of text. By using more general features, 
unsupervised methods are often less bound than supervised 
methods to specific text types, and hence they can be more 
readily applied to documents that have varying characteristics.    

A simple example of an unsupervised method is one that 
assumes that possible relationships exist between all genes and 
diseases mentioned together in the same document; the 
probability of an association becomes much greater if there are 
many documents that mention the gene and disease [28]. The 
powerful nature of calculating such co-occurrence statistics over 
large document collections as a means to find associations has 
been exploited in a number of semantically-enhanced search 
engines (e.g., [29, 30]).  Additional techniques to improve the 
results include automatically classifying documents according to 

Session: Health Data Mining DH’17, July 2-5, 2017, London, United Kingdom

181



 

whether they concern topics of interest [31-33], or by identifying 
documents that contain additional keywords denoting 
relationships of interest (e.g., alteration, association) [34-36].   

Other methods only consider relations within single sentence, 
given the higher probability of associations in this context [37], 
possibly accompanied by keywords belonging to relation-
denoting semantic classes (e.g., association) [38]. However, 
simple co-occurrence of genes, diseases and other keywords is 
not sufficient to detect relationships accurately in more complex 
sentences, e.g., The BCAP31 gene is located between SLC6A8, 
associated with X-linked creatine transporter deficiency, and 
ABCD1, associated with X-linked adrenoleukodystrophy.  A 
co-occurrence-based approach would identify 6 pairwise 
associations between the underlined genes and emboldened 
diseases. However, only 2 associations are actually mentioned.  

To better handle such cases, sentence structure can be 
exploited to identify valid relationships, e.g., using sets of hand-
crafted linguistic patterns [26, 39-42], possibly supported by 
ontological information [43]. However, the diverse ways of 
describing relationships makes it impossible to develop patterns 
that can account for all cases. Domain-adapted syntactic parsers, 
(e.g., [44, 45]) analyse the “deeper” syntactic structure of 
sentences, in order to identify consistent grammatical 
relationships between words and phrases, regardless of the exact 
sentence structure. For example, in the sentence PKLR and 
NOS1AP are reported to be strongly associated with type 2 
diabetes, parsers can identify the relationships between PKLR, 
NOS1AP and type 2 diabetes, via their grammatical links with the 
verb associate, regardless of intervening verbs and adverbs, etc.  

Grammatical information has previously been exploited to 
recognise gene-disease and pharmacogenomic relationships ([46, 
47], possibly further filtered by imposing limits on the distance 
between the gene and disease [37], or by applying ML to 
determine the most likely relationship-denoting grammatical 
patterns [18]. The latter approach (BeFree) has been applied to a 
large collection of MEDLINE abstracts, resulting in the detection 
of over 300,000 relations, which have subsequently been 
integrated within DisGeNET [10, 48], a large repository of gene-
disease relations with an associated search interface, combining 
expert curated information with text-mined data.  

Since a purely grammar-driven approach may identify fewer 
relations than using co-occurrence [46], another approach used 
specific sentence characteristics to determine whether a co-
occurrence or grammar-based relation extraction strategy should 
be employed [37].  However, such a strategy has not been 
applied to the detection of gene-disease associations.  

3 OUR APPROACH 
In common with several studies mentioned above, our aim has 
been to extract general gene-disease relations within single 
sentences.  The defining features of our approach are as follows: 
• We have explored how the performance of different 

extraction techniques (co-occurrence or grammar-driven) 
varies according to the complexity of the sentence. 

• Our selective use of co-occurrence is aimed at maximising 
the number of relations identified, without sacrificing the 
increase in accuracy that can be achieved by applying 
grammar-driven extraction to more complex sentences.    

• We use an unsupervised method to generate relationship-
denoting grammatical patterns, using evidence from 
approximately 1 million MEDLINE abstracts.  

• We explore various ways to refine and filter these patterns, 
in order to achieve maximum relation extraction accuracy. 

4 EVALUATION CORPUS 
A “gold-standard” human-annotated corpus, marked up with 
genes, diseases and relationships between them was needed to 
allow us to evaluate the relationships identified by our methods 
against the human-identified relationships.   

EU-ADR [25] is one of the few suitable corpora, consisting of 
complete, randomly selected abstracts, which reduces bias 
towards specific subject areas, and provides evidence of how 
relations are expressed in different sentence types.  Annotations 
consist of diseases, genes and associated variants, with 265 
relationships annotated between them. The association of 
annotations to text spans is also advantageous. 

However, upon a close examination of the corpus, we found a 
number of inconsistencies, i.e., certain types of information are 
annotated in some sentences, but not in others. Table 1 
exemplifies the 4 main types of inconsistencies that we found. 

We decided to resolve these issues by adding additional 
relation annotations (bringing the total number to 477), given 
our interest in detecting all potential relations between genes 
and diseases, regardless of how they are described (e.g., as full 
forms or abbreviations) and of their intended interpretation, e.g., 
whether the relationship is a subject of investigation, a definite 
experimental observation, a tentative analysis, etc.  

Annotation quality was maintained in the augmented corpus 
by adding new relationships only when existing relation 
annotations provided sufficient evidence of the validity of the 
new relationship.  Specific guidelines used included: 
• Missed relations involving variants were only added if a 

relationship involving the associated gene and the same (or 
related) disease was already annotated in the abstract.  

• Missed relations were added where the sentence structure 
provided reliable evidence of the validity of the relation, 
according to its relationship with an existing annotated 
relation (e.g., where a gene is in a list with another gene for 
which a relationship has already been annotated).  

• Missed relations were annotated in contexts that had been 
annotated inconsistently, in cases where the sentence 
structure makes the gene-disease association very clear, i.e.: 
as a subject of investigation: The aim of the present study 
was to investigate relationships between single nucleotide 
polymorphisms (SNPs) in the human SLC12A3 gene and 
essential hypertension (EH) in Japanese or in a title: Three 
new BLM gene mutations associated with Bloom 
syndrome.
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Table 1: Inconsistencies in the EU-ADR corpus – blue=diseases; green=genes/variants annotated as related to the disease; 
red=genes/variants NOT annotated as related to the disease 

Category Example 1 Example 2 
Sentence  Comment Sentence  Comment 

Genes/ 
variants 

The haplotypes constructed 
from the three SNPs 
(rs3840846, rs3826047 and 
rs3743500, in order) in the 5'-
upstream of NPTN showed a 
significant association with 
schizophrenia 

Four 
associations 
annotated 
involving 
BOTH the 
SNPs and gene  

Ala394Thr polymorphism 
in the clock gene NPAS2: 
a circadian modifier for 
the risk of non-
Hodgkin's lymphoma. 

ONLY associations 
between disease and gene 
annotated. Relationship 
involving the Ala394Thr 
polymorphism NOT 
annotated.  

Titles  Association of variants of the 
interleukin-23 receptor 
gene with susceptibility to 
pediatric Crohn's disease. 

Association 
between gene 
and disease IS 
annotated 

Malic enzyme 2 and 
susceptibility to psychosis 
and mania. 
 

NO associations 
annotated (2 associations 
missed) 

Investigative 
sentences 

The study investigated the 
possible association of NRG3 
gene and schizophrenia in a 
Han Chinese population. 

Association 
between gene 
and disease IS 
annotated 

The authors investigated 
the correlation between 
the presence of the 
rs42524 polymorphism in 
COL1A2 and the 
occurrence of sporadic IAs 
in Chinese patients 

NO associations 
annotated  (2 associations 
missed) 

Full forms and 
abbreviations 

Fetal haemoglobin (HbF) 
level modifies the clinical 
severity of HBB disorders 

Associations 
annotated 
between the 
disease and 
BOTH the full 
form and 
abbreviation of 
the gene 

Recently an association 
was shown between the 
single nucleotide 
polymorphism (SNP), 
rs11209026, within the 
interleukin-23 receptor 
(IL23R) locus and 
Crohn's disease (CD). 

Only SOME relationships 
annotated. Missing 
relationships between 
IL23R and CD, and 
between interleukin-23 
receptor and both short 
and long forms of the 
disease.  

 

5 RELATION EXTRACTION EXPERIMENTS  
Using the augmented EU-ADR corpus for evaluation, we 
assessed the accuracy of various approaches to extracting gene-
disease relations. We divided sentences containing at least one 
gene and one disease mention into 4 different categories, 
allowing us to assess how different methods perform when 
applied to sentences of varying complexity. We characterise 
“complexity” according to the number of gene and disease 
mentions in a sentence. The 4 sentence categories are as follows:  
• Single-both (SB) – single gene and single disease mention 
• Single-gene (SG) – single gene and multiple diseases 
• Single-disease (SD) – single disease and multiple genes 
• Multiple-both (MB) – multiple gene and disease mentions  

We treat annotations of both genes and their variants as a 
single class, which we refer to as “gene”. This is because 
common types of patterns are often used to denote associations 
involving both concept categories, and we wanted to make 
maximum use of all annotated relationships in evaluating our 
methods. We report our results using the following measures:  
• (P)recision – The proportion of relations recognised by the 

method that are actually correct, according to comparison 
with annotations in the augmented EU-ADR corpus. 

• (R)ecall – The proportion of all correct relations (according 
to the augmented EU-ADR) recognised by the method. 

• (F)-score – The harmonic mean of precision and recall, 
providing a single overall measure of performance.   

5.1 Baseline Methods 
We began by performing 2 sets of simple “baseline” experiments, 
as a point of comparison for more complex methods: 
• Sentence-based co-occurrence (i.e., every gene mentioned in 

the sentence is considered to be related to every disease). 
• Unrestricted dependency paths (i.e., genes and diseases are 

only considered to be related if they are connected via 
grammatical relations).   

A grammatical dependency analysis of the sentence Many 
childhood gliomas are associated with activation of BRAF is shown 
in Fig. 1.  The analysis takes the form of a tree, whose root is the 
main verb in the sentence, i.e., associated.  Each “node” in the 
tree corresponds to a word and each “branch” connects two 
words, and has a label indicating the type of grammatical 
relationship that holds between them.  For example, since the 
sentence is in the passive voice, gliomas is identified as the 
“head” of a noun phrase that corresponds to the passive subject 
(nsubjpass) of the verb associated. The word gliomas is itself part 
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of the compound noun childhood gliomas; the fact that childhood 
modifies gliomas is denoted by the nn label.  

Within the tree structure, we can trace a path connecting 
BRAF with gliomas. Working upwards from both the gene and 
the disease nodes, the routes meet at a common node, and thus a 
dependency path can be traced between them. In the example 
shown in Fig. 1, the path is BRAF → activation → associated → 
gliomas, in which associated constitutes the common node. 

For the unrestricted dependency baseline method, we assume 
that any path connecting a gene and a disease denotes an 
association. We used the recently released MEDLINE 
dependency analyses [49], which apply the BLLIP constituent 
parser [50], with a biomedical model [45].  We use the 
conversions to the collapsed Stanford dependency scheme [51]. 

 
Figure 1: Example of dependency parsing 

 
Table 2 shows the baseline method results. In line with 

previous findings (e.g., [20, 37]), simple co-occurrence achieves 
high overall results. However, this general result hides the 
considerable discrepancies in precision between sentences of 
different complexities, e.g., the difference of almost 20% between 
SB and MB sentences. This provides strong motivation to 
consider alternative approaches for more complex sentences. 
Unrestricted dependency paths appear to offer few advantages 
over simple co-occurrence. The complex nature of dependency 
trees and possible paths through them may mean that there is no 
strong association between some connected words.  

 
Table 2:  Baseline approaches for different sentence types 

  Co-occurrence Dependency path 
# rels P R F P R F 

SB 116 90.5 100 95.0 90.3 97.1 93.6 
SG 66 83.3 100 90.1 82.8 96.3 89.1 
SD 249 79.9 100 88.8 81.4 99.5 89.6 
MB 164 71.2 100 83.4 71.6 98.3 82.3 
Total 477 80.2 100 89.0 80.1 98.3 88.6 

5.2 Collecting Textual Evidence about Relations 
Since other studies have reported positive results using 
dependency relations, we investigated imposing restrictions on 
which dependency paths constitute valid relations. We obtained 
evidence about how gene-disease relationships are described 
within approximately 1 million MEDLINE abstracts from 2015. 
We used the DisGeNET database [10] of gene-disease relations 
to obtain gene-disease pairs for which evidence would be sought 
in the MEDLINE abstracts. We used 2 sets of pairs: 

• All gene-disease pairs listed in DisGeNET, obtained using a 
manual and TM methods (approx. 430,000 pairs) 

• Manually curated pairs only (approx. 33,000 pairs)  
Whilst the manually curated pairs are expected to be of high 

quality, the use of text-mined pairs provides scope for collecting 
additional evidence about how relations are described in text. In 
DisGeNET, each gene-disease pair is represented as a pair of 
concept identifiers, referring to entries in domain specific 
databases, i.e., NCBI Entrez Gene [52] for genes and the UMLS 
Metathesaurus [53] for diseases.  

To find textual evidence about how all DisGeNET gene-
disease relations are described in the 2015 abstracts, we made 
use of the gene and disease mentions automatically recognised 
in MEDLINE abstracts [49]. We subsequently used Pubtator 
mappings [54] to associate each of these mentions with a 
suitable database identifier. For each DisGeNET gene-disease 
pair, we could then collect all sentences from the abstracts in 
which the gene and disease are mentioned together.    

5.3 Restriction Based on Common Nodes 
In Fig. 1, the common node in the path between the gene and the 
disease is associated, which is the type of relation-indicating 
word that has been used as a filter for gene-disease relations in 
several previous studies. Therefore, we investigated whether 
relation extraction performance could be improved by placing 
restrictions on which words can appear at the common node.  

We collected a list of all words (3,392 in total) appearing at 
the common node of all of textual mentions of DisGeNET gene-
disease relations that occur in the 2015 abstracts.  We then 
evaluated the effect of requiring that the common node should 
correspond to one of these words in order to be classified as a 
valid association (see Table 3). Given the large number of words 
that appear rarely as the common node (over 2,000 of the words 
occur 5 times or less), we also assessed the impact of applying a 
frequency threshold to filter out rare words.  

For all categories of sentences, the use of all words from 2015 
abstracts results in a modest increase in precision compared to 
the baseline methods, demonstrating a slight filtering ability. 
Although recall is quite high in most cases (suggesting that most 
relations are described using fairly fixed vocabulary), it is still 
lower than the baselines, and a small improvement in F-Score 
(0.5) over either of the baselines is only observable for SG 
sentences.  Frequency-based filtering of common node words 
results in further small increases in precision for SD and MB 
sentences, but a corresponding significant drop in recall. 

 
Table 3:  Common node dependency path restriction 

 All words Words with frequency 
> 5 

P R F P R F 
SB 90.7 93.3 92.0 89.6 81.9 85.6 
SG 85.4 96.3 90.6 83.6 83.6 83.6 
SD 83.8 96.0 89.5 85.0 91.5 88.1 
MB 71.8 90.7 80.1 73.4 83.0 78.1 
Total 82.1 94.1 87.7 82.7 86.3 84.5 
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5.4  Pattern-Based Dependency Restrictions  
We next collected all of the unique dependency patterns that 
connect DisGeNET gene-disease pairs in sentences from the 2015 
abstracts. We represent the path pattern between the gene and 
the disease in Fig 1. as follows: 

prep_of èprep_with èVBD çnsubjpass 
Starting from the left, the pattern consists of the labels on the 

route through the dependency tree leading from the gene to the 
common node; the labels on the route from the disease start 
from the right of the pattern. The common node is represented 
by its part-of-speech, in this case a past tense verb (VBD).  

We collected separate sets of patterns for gene-disease pairs 
originating from both DisGeNET lists (i.e., all pairs and curated 
pairs). The counts of unique patterns were as follows: 
• All DisGeNET gene-disease pairs – 70,229 patterns 
• Curated DisGeNET gene-disease pairs – 21,105 patterns 

We subsequently applied these patterns to the augmented 
EU-ADR corpus, extracting relations only in cases where the 
dependency path between the gene and the disease matched one 
of the extracted patterns.   The results are shown in Table 4.   

 
Table 4:  Evidence-based dependency pattern extraction 
 Patterns from all 

DisGeNET pairs 
Patterns from curated 

DisGeNET pairs 
P R F P R F 

SB 94.1 60.9 74.0 97.9 44.8 61.4 
SG 81.8 32.7 46.8 88.8 29.1 43.8 
SD 81.2 41.2 54.7 82.8 31.7 45.8 
MB 94.8 46.6 62.5 94.4 43.2 59.2 
Total 88.0 45.9 60.3 90.3 37.1 52.6 

 
The precision values obtained are mostly higher than when 

common node restrictions are used, demonstrating a superior 
filtering ability of the patterns. Most striking is the precision 
increase of around 23% for MB sentences, compared to the 
baselines, showing that the patterns are particularly effective in 
separating out the individual relations expressed in these 
complex sentences.  The slightly higher precision values when 
patterns are generated from curated relations highlight the 
possible advantages of using these as a starting point.   

The major disadvantage of using fine-grained dependency 
patterns to restrict relation extraction is the very low recall. The 
varying path lengths, using combinations of the 50+ different 
dependency labels in the Stanford scheme, result in an immense 
potential number of unique patterns, which cannot be accounted 
for even when using evidence from 1 million abstracts.     

5.5  Generalising Dependency Patterns 
To address the high variability of unique dependency patterns 
using fine-grained labels, we generalised the patterns, to allow 
them to cover a wider range of cases, and hopefully to increase 
recall. We performed 2 levels of generalisation, which we term 
simple generalisation and hierarchy-driven generalisation. For 
simple generalisation, we applied the following steps:       

• In relation labels that are “specialised” with specific words, 
these specific words were removed (e.g., conj_and is 
generalised to conj, prep_in is generalised to prep, etc.) 

• Any identical, consecutive labels in the path are collapsed 
into a single label (e.g.,  prepèprep is collapsed to prep).  

• Three character part-of-speech tags at common nodes were 
generalised to two-character tags (e.g., VBD, VBP and VBZ 
are all different forms of verbs, which we generalise to VB).  

Hierarchy-driven generalisation exploits the hierarchical 
structure of Stanford dependency labels.  We focus specifically 
on generalising the argument and modifier branches of the 
hierarchy, some examples of which are provided in Table 5. 

 
Table 5:  Argument and modifier examples 

Type Description Examples 
Argument Completes the 

meaning of a 
verb  

Subject - ChIP sequencing reveals 
novel binding targets 
Direct Object - CC-122 binds 
CRBN 
Adjectival complement -  Jugular 
venous thrombosis could be 
secondary to malignancy 

Modifier Describes a 
phrase to 
make it more 
specific  

Adjectival modifier - infective 
endocarditis 
Adverbial modifier - aberrantly 
upregulated 
Prepositional modifier - 19% of ILI 
patients had died from melanoma 

 
In addition to the steps of simple generalisation, hierarchy-

driven generalisation collapses all labels falling under a 
particular branch to a single label. Our experiments (results 
shown in Table 6) collapsed different combinations of hierarchy 
branches, and at different levels of granularity. The following 
abbreviations refer to the different levels of generalisation:  
• MOD – modifier labels (approx. 20) generalised to MOD 
• ARG - argument labels (approx. 15) generalised to ARG 
• SUBJ  - the 4 labels falling under the subject category (a 

sub-category of ARG) generalised to SUBJ 
• OBJ - the 3 labels falling under the object category (a sub-

category of ARG) generalised to OBJ 
All types generalisation have a positive impact on recall, 

which generally increases with the degree of generalisation. 
However, increased recall comes at the cost of decreased 
precision - the more general the patterns become, the less 
discriminative they appear to be in terms of identifying valid 
gene-disease relations only. Although precision is least affected 
by simple and ARG generalisation (the latter suggesting that 
there is less variation in fine-grained argument relations 
compared to fine-grained modifier relations), the lower recall 
levels compared to other generalisations are problematic. In 
contrast, all cases involving MOD generalisation achieve far 
better recall rates (up to 25% for MB sentences). Indeed, the most 
extreme generalisations (MOD-ARG) achieve recall that is 
almost the same as for unrestricted dependency paths, providing 
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Table 6: Results of applying different pattern generalisation approaches 
 Simple ARG MOD MOD-ARG MOD-SUBJ-OBJ 

P R F P R F P R F P R F P R F 

All 

SB 91.3 89.5 90.4 91.6 93.3 92.5 90.2 96.2 93.1 90.3 97.1 93.6 90.2 96.2 93.1 

SG 87.8 78.2 82.7 86.0 78.1 81.9 82.8 96.4 89.1 82.8 96.4 89.1 82.8 96.4 89.1 

SD 81.5 75.4 78.3 80.1 78.9 79.5 81.1 92.5 86.4 81.6 96.0 88.2 81.1 93.0 86.7 

MB 86.0 67.8 75.8 81.3 73.7 77.3 75.3 98.3 85.3 75.3 98.3 85.3 75.3 98.3 85.3 

Tot 85.5 76.9 81.5 83.7 80.7 82.2 81.5 95.2 87.8 81.8 96.7 88.7 81.5 95.4 87.9 

# Patts 31,946 22,532 8,465 3,088 7,194 

Curat. 

SB 91.5 81.9 86.4 92.1 88.6 90.3 90.0 94.2 92.1 90.3 97.1 93.6 90.0 94.2 92.0 

SG 86.4 69.0 76.8 86.7 70.9 78.0 82.8 96.4 89.1 82.8 96.4 89.1 82.8 96.4 89.1 

SD 83.8 70.4 76.5 81.4 74.9 78.0 81.6 88.9 85.1 81.0 92.0 86.1 81.9 91.0 86.2 

MB 85.6 62.5 74.0 80.1 72.0 76.2 78.8 91.5 84.7 75.5 98.3 85.2 80.0 98.3 88.2 

Tot 86.4 71.5 78.2 84.3 76.7 80.3 82.8 91.6 87.0 81.5 95.2 87.8 83.1 94.1 88.3 
# Patts 11,169 8,569 3,331 1,435 2,904 

 
strong evidence that generalised patterns can identify nearly all 
gene-disease relations.  

The problems in balancing precision and recall mean that 
there appear to be no clear advantages in using any kind of 
restricted dependency paths over the simpler baseline 
approaches for SB, SD and SG sentences. Hence, we have not 
carried out any further experiments using these sentences.  

However, the benefits of using restricted dependency paths 
for MB sentences are clear.  The highest precision of 80% for MB 
sentences, obtained using MOD-SUBJ-OBJ generalisation of 
patterns generated using curated gene-disease pairs, represents 
an increase in precision over the baselines of over 8%, without 
any decrease in recall. Accordingly, the F-Score for such 
relations is increased by around 5%.  This result also provides 
further evidence of the higher quality nature of the patterns 
generated from curated pairs, especially as we converge towards 
a smaller set of general patterns, as well as suggesting that a 
slightly finer-grained generalisation of ARG labels, which 
distinguishes subjects from objects, is advantageous.    

5.6  Filtering Generalised Patterns 
We investigated whether filtering of the best performing 
generalised patterns (i.e., MOD-SUBJ-OBJ patterns generated 
from curated gene-disease pairs) could help to isolate the most 
reliable relation-denoting patterns, and hence improve 
extraction accuracy. We applied three different filtering 
techniques, and assessed their ability to improve relation 
extraction performance in MB sentences (as shown in Table 7):  
• Pattern-based frequency filtering (PBF) – only those 

patterns occurring above a certain frequency threshold in 
the 2015 abstract set are considered to denote valid 
relations. 

• Relation-based frequency filtering (RBF) – only patterns 
occurring between gene-disease pairs that are mentioned in 
the 2015 abstract set above a certain threshold are 
considered to denote valid relations. 

• Path length filtering (PL) – only patterns whose length is 
below a certain threshold are considered to denote valid 
relations. 

 
Table 7: Effects of filtering generalised dependency patterns 

Filtering method P R F # Patts 
PBF >= 5 82.7 97.4 89.5 435 
PBF >= 10 82.4 87.3 84.8 226 
RBF>=25 80.6 98.3 88.5 1,912 
RBF>=50 81.7 98.3 89.2 1,578 
RBF >=100 81.7 98.3 89.2 1,252 
PL <= 6 86.3 85.6 85.9 1,840 
PL <= 7 83.3 97.5 89.8 2,420 
PL <= 8 80.5 98.3 88.5 2,725 

 
All filtering techniques improve upon the 80% precision 

achieved for the unfiltered patterns, with the highest precision 
being achieved using PL<=6. However, a large drop in recall 
compared to the unfiltered patterns shows that many valid paths 
are longer than this. Although using PL<=7 appears to be the 
optimal filtering technique, several other filtering techniques 
offer comparable levels of performance.  It is interesting to note 
that PBF significantly reduces the number of patterns used and 
yet, when using patterns that occur 5 or more times, 
performance still remains high.  This suggests that PBF is the 
most effective filter for high quality patterns. Whilst RBF 
achieves slightly lower precision, the higher recall compensates 
for this. Most filtering techniques have little negative effect on 
recall, showing that they can effectively remove patterns not 
needed for accurate relation extraction.  

Based on the positive results obtained for individual filtering 
techniques, we combined the best performing settings, to try to 
further boost performance. The results are shown in Table 8.    
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Table 8: Effects of combining filtering techniques 
Filtering methods P R F # Patts 
PL <= 7, PBF > =5 84.4 96.6 90.1 430 
RBF>=100, PBF >=5 84.7 79.7 82.1 169 
PL <= 7, RBF >= 100 84.6 97.5 90.6 1,105 

 
Whilst the combination of RBF and PBF filtering appears to 

remove too many potentially useful patterns, the importance of 
PL as a filter is further reinforced through its ability to slightly 
refine the sets of patterns obtained through either RBF or PBF, 
with only minimal loss of recall.  Whilst best the filtering 
technique combines PL and RBF, the combination of PL with PBF 
achieves comparable performance, using less than half the 
patterns. Thus, high performance can be achieved with only 430 
generalised patterns (compared to the original 21,105 fine 
grained patterns).  

6 COMBINING EXTRACTION APPROACHES 
In Table 9, we show the results of applying our proposed 
“optimal” approach for relation extraction to the augmented EU-
ADR corpus, and compare this to the co-occurrence baseline. For 
SB, SG and SD sentences, we use this same baseline, since none 
of the experiments involving dependency paths resulted in any 
significant improvements in extraction performance. However, 
for MB sentences, we use the best performing filtered, 
generalised dependency patterns, as these achieve a 13% increase 
in precision and an 8.3% increase in F-score over the baseline for 
MB sentences, leading to a 3.4% increase in overall precision 
when considering the corpus as a whole.  

 
Table 9: Combining co-occurrence and dependency patterns 

 Final method Baseline 
P R F P R F 

SB 90.5 100 95.0 90.5 100 95.0 
SG 83.3 100 90.1 83.3 100 90.1 
SD 79.9 100 88.8 79.9 100 88.8 
MB 84.6 97.6 90.6 71.6 98.3 82.3 
Total 83.6 99.4 90.8 80.2 100 89.0 

 
Although we can contrast our results with those obtained in 

previous studies, the use of different evaluation corpora in each 
case makes a direct comparison impossible. Whilst 94% precision 
is reported for co-occurrence based extraction in [20], their 
randomly selected sentences may not fully account for sentences 
of different complexities. In contrast, the 75.9% precision and 
84.1% F-score achieved using co-occurrence extraction in [37] 
seem to better reflect the difficulties in achieving high accuracy 
using this simple method in isolation. A similar level of overall 
performance was achieved using the ML-driven dependency 
approach in [18], i.e., P 75.1%, R 97.7%, F 84.6%.  Whilst the recall 
is similar to our dependency-based experiments, our evidence-
based dependency paths appear to achieve greater precision. 
Overall, the evidence suggests that our selective combination of 
dependency patterns with co-occurrence offers advantages over 
methods that apply only a single approach. 

7 LARGE-SCALE RELATION EXTRACTION  
To assess the performance of our optimal extraction strategy on 
a much larger collection of documents, we compared our results 
to those obtained by BeFree [18] on approximately 74,000 
abstracts from 2015. We obtained a file of relations extracted by 
BeFree from the DisGeNET website, which includes the PMIDs 
of all abstracts containing evidence for each gene-disease 
relation, along with one sentence from each abstract that 
contains the relation, in which the exact text spans 
corresponding to the gene and disease mentions are identified.  

We wanted to be able to compare the performance of BeFree 
with our own approach on a common set of abstracts and 
ideally, using a common set of recognised gene and disease 
mentions, which would help to avoid any potential bias 
introduced by different NER methods.  We retrieved the same set 
of around 74,000 abstracts processed by BeFree by using the 
same PUBMED query provided on the DisGeNET website used 
to obtain a set of abstracts focussed on human diseases and their 
associated genes for subsequent processing by BeFree, i.e., 

("Psychiatry and Psychology Category"[Mesh] AND 
"genetics"[Subheading]) OR ("Diseases Category"[Mesh] AND 
"genetics"[Subheading]) AND (hasabstract[text] AND 
"humans"[MeSH Terms] AND English[lang]) 

It was more challenging to try to ensure that our method had 
access to the same set of gene and disease mentions used as the 
starting point for BeFree relation extraction. This is because the 
full set of gene and disease NER results obtained from the 
BioNER module [55] of BeFree for all abstracts is not made freely 
available. Rather, the BeFree relations file only shows NER 
results for selected sentences of certain abstracts. We therefore 
attempted to approximate the output of BioNER, by taking all 
gene and disease mentions for each abstract provided in [49], 
and filtering out any mentions whose span did not correspond 
exactly to one of the BioNER-recognised spans within the 
evidence sentences of the BeFree relations file.   

We then applied our relation extraction approach to mentions 
of the 4,065 genes and 2,763 diseases that remained after 
applying the above NE filtering step to the 74,000 abstracts. Our 
comparison (see Table 10) covers both the number of unique 
associations (i.e., gene-disease pairs) identified, and the number 
of abstracts in which evidence was found for these associations. 

The overall number of relations recognised by each method is 
very similar. However, the degree of overlap shows that, whilst 
many of the same relations are detected by both methods, a 
significant proportion of relations is only recognised by one or 
other of the methods.  This provides evidence that the different  

 
Table 10: Comparison of BeFree with our method 

Comparison type Method Count 
Gene-disease 
associations 
detected  

BeFree 12018 
Our method 12130 
Overlap 8957 

Pieces of evidence  
detected  

BeFree 22785 
Our method 28704 
Overlap 15926 
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approaches produce results that can complement each other.  
Indeed, a closer analysis of the non-overlapping relations found 
by our method reveals that 1,392 are potentially novel relations 
that do not appear in the DisGeNET database at all, while 1,586 
correspond to relations that are listed in DisGeNET, but which 
were not found by BeFree in the 2015 abstract subset.  Examples 
of relevant sentences containing novel relations identified by our 
method demonstrate its ability to recognise valid relations:  
• Our data establish YB-1 as a critical regulator of hypoxia-

inducible factor 1alpha (HIF1alpha) expression in sarcoma 
cells. 

• Phosphoglycerate dehydrogenase is likely to be associated 
with tumorigenesis and may be a potential prognostic marker 
for CIN progression  

The fact that the above sentences, and many other sentences 
denoting novel relations detected by our method, mention only a 
single gene and disease (and hence are detected using co-
occurrence), reinforces the advantages of using co-occurrence as 
well as dependency relations.  On the other hand, of the 44,802 
sentences within the abstract subset set that contain at least one 
gene and one disease, 13,447 (i.e., 30%) contain both multiple 
gene and multiple disease mentions, highlighting the importance 
of the dependency-based approach.  

Our use of restricted dependency patterns can filter out some 
incorrect relations that are recognised by BeFree, as in the 
following example, for which BeFree incorrectly detects a 
relation between lung tumors and JAK2:  

Some of these mutant genes (such as BAG6, SPEN and WISP3) 
are recognized as major cancer players in lung tumors; others 
have been previously identified in other human cancers (JAK2, 
TCEB3C, NELFE, TAF1B, EBLN2).  

On the other hand, the fact that BeFree can complement the 
results of our method is evidenced in its ability to recognise 
certain relationships in sentences that have complex or unusual 
structures, which are not detected by our patterns, e.g., 

Silent information regulator-2 (Sir-2) proteins, or sirtuins, are a 
highly conserved protein family of histone deacetylases that 
promote longevity by mediating many of the beneficial effects of 
calorie restriction which extends life span and reduces the incidence 
of cancer, cardiovascular disease (CVD), and diabetes 

Another important finding from our comparison is that, 
although the two methods detect roughly equal numbers of 
unique associations, our approach can detect significantly more 
evidence for these associations in different abstracts.  This is 
important for our own ultimate aims, since we want to collect as 
much evidence as possible for each relation, to allow us to detect 
different types of interpretative and contextual information 
provided in different sentences that mention the relation. In 
terms of interpretative information, our future work will allow 
relations to be filtered according to whether they represent 
factual knowledge or experimental analyses etc., or to allow 
“tracking” of associations over time, e.g., to examine transitions 
from initial hypotheses to accepted associations that are backed 
by experimental evidence.  Contextual information will include 
details such as risk factors (e.g., smoking) that interact with or 
impact upon gene-disease associations, or the specific population 

subgroups in which an association has been found to occur. In 
this respect, our method can be valuable in allowing additional 
details to be found. For example, whilst there are 26 sentences 
from abstracts in DisGeNET providing evidence of associations 
between cagA and gastritis, none mention the specific link with 
Iranian children, found in an additional sentence retrieved by 
our method, i.e., vacAs1 and cagA are associated with more severe 
gastric inflammation in Iranian children. 

8 CONCLUSIONS  
In this paper, we have described our approach to detecting 
associations between genes and diseases mentioned in literature, 
as a first step towards developing a sophisticated search system 
to facilitate the efficient location of various types of evidence 
relating to biomarkers. Our novel technique combines relation 
extraction methods of varying sophistication, according to the 
complexity of sentences, and our use of evidence-based 
dependency patterns, which have been carefully generalised and 
filtered to obtain maximum accuracy, can improve extraction 
precision in sentences containing multiple gene and disease 
mentions by 13% compared to simple co-occurrences, with 
minimal loss of recall. Comparison of the output of our method 
with that of a related method (BeFree) on a large dataset 
revealed that our approach can identify many potentially novel 
gene-disease relationships, and is particularly effective in 
identifying large amounts of supporting textual evidence.   

As future work, we intend to recognise mentions of further 
types of concepts and develop methods to link them with the 
recognised gene-disease relationships, in order to construct more 
complex, structured representations of biomarker-related 
knowledge that can be queried in complex ways or used to 
populate biomarker databases.  We will also extend upon 
previous work (e.g., [56]) to allow various types of interpretative 
information about relations to be detected automatically. 
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